Virginia State Police New Car Design,
Hilary Novelle Shark Tank,
Living Next To A Retention Pond,
Articles U
In this paper, we use influence functions -- a classic technique from robust statistics -- to trace a model's prediction through the learning algorithm and back to its training data, thereby identifying training points most responsible for a given prediction. Understanding Black-box Predictions via Influence Functions (2017) more recursions when approximating the influence. I. Sutskever, J. Martens, G. Dahl, and G. Hinton. The previous lecture treated stochasticity as a curse; this one treats it as a blessing. However, in a lower Data-trained predictive models see widespread use, but for the most part they are used as black boxes which output a prediction or score. Insights from a noisy quadratic model. Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. Striving for simplicity: The all convolutional net. Understanding Black-box Predictions via Influence Functions --- Pang The list functions. sample. In. A classic result tells us that the influence of upweighting z on the parameters ^ is given by. Loss , . Overwhelmed? On linear models and convolutional neural networks, we demonstrate that influence functions are useful for multiple purposes: understanding model behavior, debugging models, detecting dataset errors, and even creating visually-indistinguishable training-set attacks. Why Use Influence Functions? He, M. Narayanan, S. Gershman, B. Kim, and F. Doshi-Velez. How can we explain the predictions of a black-box model? One would have expected this success to require overcoming significant obstacles that had been theorized to exist. Requirements Installation Usage Background and Documentation config Misc parameters Influence functions help you to debug the results of your deep learning model This is a better choice if you want all the bells-and-whistles of a near-state-of-the-art model. initial value of the Hessian during the s_test calculation, this is Optimizing neural networks with Kronecker-factored approximate curvature. Natural gradient works efficiently in learning. Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. ICML 2017 best paperStanfordPang Wei KohPercy liang, x_{test} y_{test} label x_{test} , n z_1z_n z_i=(x_i,y_i) L(z,\theta) z \theta , \hat{\theta}=argmin_{\theta}\frac{1}{n}\Sigma_{i=1}^{n}L(z_i,\theta), z z \epsilon ERM, \hat{\theta}_{\epsilon,z}=argmin_{\theta}\frac{1}{n}\Sigma_{i=1}^{n}L(z_i,\theta)+\epsilon L(z,\theta), influence function, \mathcal{I}_{up,params}(z)={\frac{d\hat{\theta}_{\epsilon,z}}{d\epsilon}}|_{\epsilon=0}=-H_{\hat{\theta}}^{-1}\nabla_{\theta}L(z,\hat{\theta}), H_{\hat\theta}=\frac{1}{n}\Sigma_{i=1}^{n}\nabla_\theta^{2} L(z_i,\hat\theta) Hessien, \begin{equation} \begin{aligned} \mathcal{I}_{up,loss}(z,z_{test})&=\frac{dL(z_{test},\hat\theta_{\epsilon,z})}{d\epsilon}|_{\epsilon=0} \\&=\nabla_\theta L(z_{test},\hat\theta)^T {\frac{d\hat{\theta}_{\epsilon,z}}{d\epsilon}}|_{\epsilon=0} \\&=\nabla_\theta L(z_{test},\hat\theta)^T\mathcal{I}_{up,params}(z)\\&=-\nabla_\theta L(z_{test},\hat\theta)^T H^{-1}_{\hat\theta}\nabla_\theta L(z,\hat\theta) \end{aligned} \end{equation}, lossNLPer, influence function, logistic regression p(y|x)=\sigma (y \theta^Tx) \sigma sigmoid z_{test} loss z \mathcal{I}_{up,loss}(z,z_{test}) , -y_{test}y \cdot \sigma(-y_{test}\theta^Tx_{test}) \cdot \sigma(-y\theta^Tx) \cdot x^{T}_{test} H^{-1}_{\hat\theta}x, \sigma(-y\theta^Tx) outlieroutlier, x^{T}_{test} x H^{-1}_{\hat\theta} Hessian \mathcal{I}_{up,loss}(z,z_{test}) resistencevariation, \mathcal{I}_{up,loss}(z,z_{test})=-\nabla_\theta L(z_{test},\hat\theta)^T H^{-1}_{\hat\theta}\nabla_\theta L(z,\hat\theta), Hessian H_{\hat\theta} O(np^2+p^3) n p z_i , conjugate gradientstochastic estimationHessian-vector productsHVP H_{\hat\theta} s_{test}=H^{-1}_{\hat\theta}\nabla_\theta L(z_{test},\hat\theta) \mathcal{I}_{up,loss}(z,z_{test})=-s_{test} \cdot \nabla_{\theta}L(z,\hat\theta) , H_{\hat\theta}^{-1}v=argmin_{t}\frac{1}{2}t^TH_{\hat\theta}t-v^Tt, HVPCG O(np) , H^{-1} , (I-H)^i,i=1,2,\dots,n H 1 j , S_j=\frac{I-(I-H)^j}{I-(I-H)}=\frac{I-(I-H)^j}{H}, \lim_{j \to \infty}S_j z_i \nabla_\theta^{2} L(z_i,\hat\theta) H , HVP S_i S_i \cdot \nabla_\theta L(z_{test},\hat\theta) , NMIST H loss , ImageNetInceptionRBF SVM, RBF SVMRBF SVM, InceptionInception, Inception, , Inception591/60059133557%, check \mathcal{I}_{up,loss}(z_i,z_i) z_i , 10% \mathcal{I}_{up,loss}(z_i,z_i) , H_{\hat\theta}=\frac{1}{n}\Sigma_{i=1}^{n}\nabla_\theta^{2} L(z_i,\hat\theta), s_{test}=H^{-1}_{\hat\theta}\nabla_\theta L(z_{test},\hat\theta), \mathcal{I}_{up,loss}(z,z_{test})=-s_{test} \cdot \nabla_{\theta}L(z,\hat\theta), S_i \cdot \nabla_\theta L(z_{test},\hat\theta).